Longitudinal Data Analysis

methods@manchester summer school

Day 4 | morning session

Le Thiago R. Oliveira

1 Lecturer in Quantitative Criminology, University of Manchester

♀ 30/06-04/07

methods@manchester

Longitudinal Data Analysis

Today

Reverse causality and reciprocal relationships

- $\rightsquigarrow~$ Causal inference and the potential outcomes framework
- $\rightsquigarrow~$ The fundamental problem of causal inference
- \rightsquigarrow Leveraging longitudinal data
- \rightsquigarrow The difference-in-differences analysis
- \rightsquigarrow Estimating CLPMs using lavaan

Potential outcomes framework

methods@manchester

Longitudinal Data Analysis

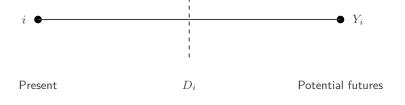
Goal in causal inference is to assess the causal effect of a treatment/exposure on some outcome

- $\rightsquigarrow~$ Does raising the minimum wage reduce employment?
- → Does housing assistance reduce homelessness?
- → Does smoking cause lung cancer?
- → Does voting by mail increase voter turnout?
- → Does exposure to misinformation reduce political trust??

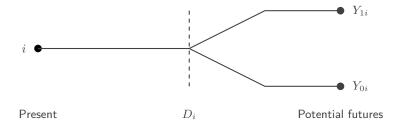
 \rightsquigarrow ...

methods@manchester

Longitudinal Data Analysis



Longitudinal Data Analysis



Longitudinal Data Analysis

Y_i : Observed outcome variable of interest for unit i

Potential outcomes

 Y_{0i} and Y_{1i} : Potential outcomes for unit i

$$Y_{\cdot i} = \left\{ egin{array}{cc} Y_{1i} & {
m Potential outcome for unit } i \mbox{ with treatment} \\ Y_{0i} & {
m Potential outcome for unit } i \mbox{ without treatment} \end{array}
ight.$$

 D_i : Indicator of treatment intake for *unit* i

 $D_i = \begin{cases} 1 & \text{if unit } i \text{ received the treatment} \\ 0 & \text{otherwise.} \end{cases}$

Definition of causal effect

$$\delta_i = Y_{1i} - Y_{0i}$$

Fundamental problem of causal inference

 \rightsquigarrow We cannot observe both potential outcomes for the same unit i!

methods@manchester

Longitudinal Data Analysis

 Y_i : Observed outcome variable of interest for unit i

Potential outcomes

 Y_{0i} and Y_{1i} : Potential outcomes for unit i

$$Y_{\cdot i} = \left\{ \begin{array}{ll} Y_{1i} & \text{Potential outcome for unit } i \text{ with treatment} \\ Y_{0i} & \text{Potential outcome for unit } i \text{ without treatment} \end{array} \right.$$

 D_i : Indicator of treatment intake for unit i

 $D_i = \begin{cases} 1 & \text{if unit } i \text{ received the treatment} \\ 0 & \text{otherwise.} \end{cases}$

Definition of causal effect

$$\delta_i = Y_{1i} - Y_{0i}$$

Fundamental problem of causal inference

 \rightsquigarrow We cannot observe both potential outcomes for the same unit i!

methods@manchester

Longitudinal Data Analysis

 Y_i : Observed outcome variable of interest for unit i

Potential outcomes

 Y_{0i} and Y_{1i} : Potential outcomes for unit i

$$Y_{\cdot i} = \left\{ \begin{array}{ll} Y_{1i} & \text{Potential outcome for unit } i \text{ with treatment} \\ Y_{0i} & \text{Potential outcome for unit } i \text{ without treatment} \end{array} \right.$$

 D_i : Indicator of treatment intake for *unit* i

$$D_i = \begin{cases} 1 & \text{if unit } i \text{ received the treatment} \\ 0 & \text{otherwise.} \end{cases}$$

Definition of causal effect

$$\delta_i = Y_{1i} - Y_{0i}$$

Fundamental problem of causal inference

 \rightsquigarrow We cannot observe both potential outcomes for the same unit i!

methods@manchester

Longitudinal Data Analysis

 Y_i : Observed outcome variable of interest for unit i

Potential outcomes

 Y_{0i} and Y_{1i} : Potential outcomes for unit i

$$Y_{\cdot i} = \left\{ \begin{array}{ll} Y_{1i} & \text{Potential outcome for unit } i \text{ with treatment} \\ Y_{0i} & \text{Potential outcome for unit } i \text{ without treatment} \end{array} \right.$$

 D_i : Indicator of treatment intake for *unit* i

 $D_i = \left\{ \begin{array}{ll} 1 & \text{if unit } i \text{ received the treatment} \\ 0 & \text{otherwise.} \end{array} \right.$

Definition of causal effect

$$\delta_i = Y_{1i} - Y_{0i}$$

Fundamental problem of causal inference

 \rightsquigarrow We cannot observe both potential outcomes for the same unit i!

methods@manchester

Longitudinal Data Analysis

Randomisation solves the problem!

Logic of randomised control trials

- $\rightsquigarrow~$ Randomly divide a sample in two groups
- $\rightsquigarrow\,$ Because this was random, both groups are on average the same
- → Then apply the treatment/exposure to one group (the treatment group), but not the other (control group)
- →→ Because the exposure happened after the treatment assignment, the only difference between the two groups is the treatment/exposure
- \rightsquigarrow Therefore, any subsequently observed differences are attributable to the treatment/exposure
- \rightsquigarrow We randomisation, we can thus find the average treatment effect

Randomisation solves the problem!

Logic of randomised control trials

- →→ Randomly divide a sample in two groups
- $\rightsquigarrow\,$ Because this was random, both groups are on average the same
- → Then apply the treatment/exposure to one group (the treatment group), but not the other (control group)
- \rightsquigarrow Because the exposure happened after the treatment assignment, the only difference between the two groups is the treatment/exposure
- \rightsquigarrow Therefore, any subsequently observed differences are attributable to the treatment/exposure
- \rightsquigarrow We randomisation, we can thus find the average treatment effect

Randomisation solves the problem!

Logic of randomised control trials

- $\rightsquigarrow~$ Randomly divide a sample in two groups
- $\rightsquigarrow\,$ Because this was random, both groups are *on average* the same
- → Then apply the treatment/exposure to one group (the treatment group), but not the other (control group)
- \rightsquigarrow Because the exposure happened after the treatment assignment, the only difference between the two groups is the treatment/exposure
- \rightsquigarrow Therefore, any subsequently observed differences are attributable to the treatment/exposure
- \rightsquigarrow We randomisation, we can thus find the average treatment effect

What if we cannot conduct an experiment?

- \rightsquigarrow Randomised Experiments
- \rightsquigarrow Observational Studies
 - · Selection on observables
 - Regression
 - Matching
 - Weighting
 - · Selection on unobservables
 - Difference-in-Differences and synthetic control
 - Instrumental Variables
 - Regression Discontinuity Designs

- \rightsquigarrow Causality is defined by potential outcomes, not by realised (observed) outcomes
- \rightsquigarrow Observed association is neither necessary nor sufficient for causality
- \rightsquigarrow Estimation of causal effects of a treatment (usually) starts with studying the assignment mechanism
- \rightsquigarrow The goal is to mimic the features of a randomised experiment even if we don't have one
- \rightsquigarrow When we don't have an RCT, our ability to make causal inferences often relies on making untestable assumptions about the assignment mechanism
- \Rightarrow Now let's see how we can leverage panel data to make causal inferences!

Difference-in-differences

methods@manchester

Longitudinal Data Analysis

\Rightarrow What if we use **time** in our favour?

- → Collect data on Y at two points in time: before and after the treatment/exposure/policy intervention
- \rightsquigarrow Analyse the extent to which Y changes in units that received the treatment
- \rightsquigarrow Analyse the extent to which Y changes in units that did NOT receive the treatment
- → Compare the two **changes**

methods@manchester

Longitudinal Data Analysis

 \Rightarrow What if we use **time** in our favour?

- \rightsquigarrow Collect data on Y at two points in time: before and after the treatment/exposure/policy intervention
- \rightsquigarrow Analyse the extent to which Y changes in units that received the treatment
- \rightsquigarrow Analyse the extent to which Y changes in units that did NOT receive the treatment
- → Compare the two **changes**

methods@manchester

Longitudinal Data Analysis

 \Rightarrow What if we use **time** in our favour?

- \rightsquigarrow Collect data on Y at two points in time: before and after the treatment/exposure/policy intervention
- \leadsto Analyse the extent to which Y changes in units that received the treatment
- \leadsto Analyse the extent to which Y changes in units that did NOT receive the treatment
- \rightsquigarrow Compare the two changes

methods@manchester

Longitudinal Data Analysis

Some conceptual clarification to make our lives easier

- → Variation between units: difference
- → Variation within units (over time): changes
- ⇒ We want to estimate the difference in changes or (difference-in-differences)
 - → The difference between (a) changes in Y before and after the intervention among treated units and (b) changes in Y before and after the intervention among non-treated units is the <u>causal effect</u>!

(under some assumptions regarding those changes... Let's dive into it)

methods@manchester

Longitudinal Data Analysis

Some conceptual clarification to make our lives easier

- → Variation between units: difference
- \rightsquigarrow Variation within units (over time): changes

⇒ We want to estimate the difference in changes or (difference-in-differences)

→ The difference between (a) changes in Y before and after the intervention among treated units and (b) changes in Y before and after the intervention among non-treated units is the <u>causal effect</u>!

(under some assumptions regarding those changes... Let's dive into it)

methods@manchester

Longitudinal Data Analysis

Some conceptual clarification to make our lives easier

- → Variation between units: difference
- \rightsquigarrow Variation within units (over time): changes
- ⇒ We want to estimate the difference in changes or (difference-in-differences)
 - → The difference between (a) changes in Y before and after the intervention among treated units and (b) changes in Y before and after the intervention among non-treated units is the <u>causal effect</u>!

(under some assumptions regarding those changes... Let's dive into it)

methods@manchester

Longitudinal Data Analysis

Some conceptual clarification to make our lives easier

- → Variation between units: difference
- \rightsquigarrow Variation within units (over time): changes
- ⇒ We want to estimate the difference in changes or (difference-in-differences)
 - → The difference between (a) changes in Y before and after the intervention among treated units and (b) changes in Y before and after the intervention among non-treated units is the <u>causal effect</u>!

(under some assumptions regarding those changes... Let's dive into it)

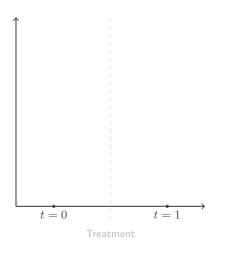
methods@manchester

Longitudinal Data Analysis

The two-period setup

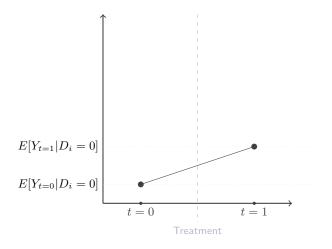
methods@manchester

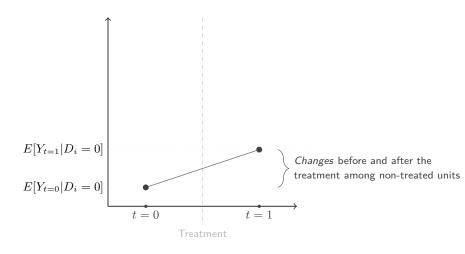
Longitudinal Data Analysis



methods@manchester

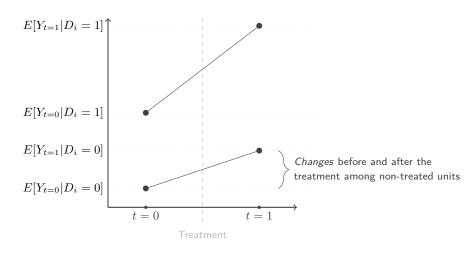
Longitudinal Data Analysis





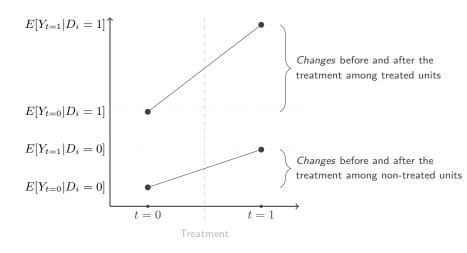
methods@manchester

Longitudinal Data Analysis



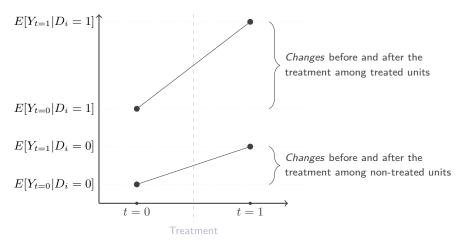
methods@manchester

Longitudinal Data Analysis



methods@manchester

Longitudinal Data Analysis

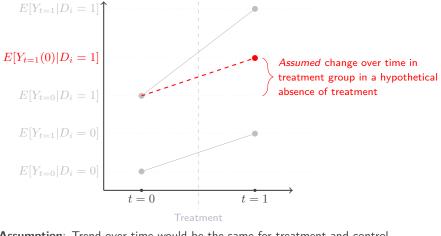


 \rightsquigarrow **Problem**: Missing potential outcomes: $E[Y_{i,t=1}(0)|D_i = 1]$ and $E[Y_{i,t=1}(1)|D_i = 0]$

methods@manchester

Longitudinal Data Analysis

Strategy: Use the change in the control group to assume $E[Y_{t=1}(0)|D_i = 1]$

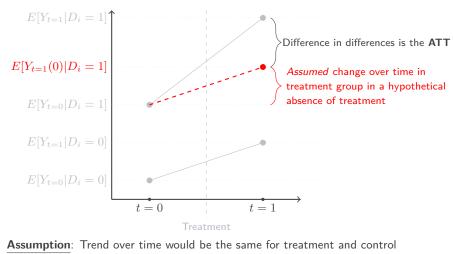


Assumption: Trend over time would be the same for treatment and control

methods@manchester

Longitudinal Data Analysis

Strategy: Use the change in the control group to assume $E[Y_{t=1}(0)|D_i = 1]$



methods@manchester

Longitudinal Data Analysis

Identification assumption

Parallel trends

 \rightsquigarrow Had the treated units not received the treatment, they would have followed the same trend as the control units

Difference-in-differences estimator

Difference in changes:

 $\delta_{ATT} = \Big\{ \text{Changes in treatment group before and after treatment} \Big\} \\ - \Big\{ \text{Changes in control group before and after treatment} \Big\}$

methods@manchester

Longitudinal Data Analysis

Threats to validity

Non-parallel trends

 \rightsquigarrow Very critical assumption: treatment units have similar trends to control units in the absence of treatment

 \rightsquigarrow Fundamental problem of causal inference: we cannot observe potential outcome under the control condition for treated units in the post-treatment period

\Rightarrow What can we do?

(more on that later...)

- · Careful assessment: is assuming parallel trends plausible?
- · Estimate treatment effects at different time points (placebo tests)

Thank you!

- thiago.oliveira@manchester.ac.uk
- ✤ ThiagoROliveira.com
- @oliveiratr.bsky.social

methods@manchester

Longitudinal Data Analysis