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Today

Reverse causality and reciprocal relationships

⇝ What is reverse causality really?
⇝ The traditional cross-lagged panel model
⇝ Reverse causality and/vs. reciprocality
⇝ Estimating CLPMs using lavaan
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Reverse causality and reciprocal effects
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Reverse causality?

When conducting empirical research, we sometimes want to examine the effect
of X on Y but are afraid that Y might also affect X

⇝ Effect of policing (X) on crime (Y )
· More police might be deployed in high-crime areas

⇝ Effect of education (X) on income (Y )
· People from higher-income families may be more likely to pursue

education

⇝ Effect of social media (X) on mental health (Y )
· People with poor mental health may use social media more

We may be interested in:

→ Controlling for reverse causality

→ Discovering the direction of the association

→ Discovering a reciprocal relationship∗
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Reciprocality

What are reciprocal effects *really*?

⇝ The world is recursive (Pearl, 2009)

· There are no simultaneous effects

⇝ Usually a time problem, either:
· Ambiguity from theory (i.e., reciprocality is substantive)

· Competing theory when they are specific (i.e., empirical adjudication
problem)

· Purely empirical problem due to repeated observations
· reciprocality is a nuisance
· reality and theory operate at one pace, but we observe data at

another

⇝ Separate theoretical and methodological concerns
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Reverse causality: a motivating example

⇝ Brunton-Smith (2011) wanted to study the relationship between fear of
crime and perceptions of disorder

· H1 : fear of crime −→ perceptions of disorder
· H2 : perceptions of disorder −→ fear of crime

⇝ Interesting question: which one is causing which?
· Can we use empirical data to answer it?
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Reverse causality: a motivating example
⇝ Panel data allows us to model changes in various ways

· e.g. including autoregressive parameters

Yit = α + β1 · Yi,t−1 + β2 · Xi,t + ε

Yi,t=1 Yi,t=2

Xi,t=1

β1

β2

⇝ Because of the inclusion of the autoregressive parameter β1:

· β2 represents the ‘effect’ of X on changes in Y
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Reverse causality: a motivating example
⇝ Good! So we can assess the association between perceptions of disorder

and changes in fear of crime:

Fear of crime at T = 1 Fear of crime at T = 2

Perceptions of disorder

⇝ But perceptions of disorder also vary in time, so we can also assess the
association between fear of crime and changes in disorder perceptions:

Disorder perception T = 1 Disorder perception T = 2

Fear of crime
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⇒ What if we draw on the SEM framework and estimate
both at the same time?

methods@manchester Longitudinal Data Analysis ThiagoROliveira.com/LDA-2025

https://thiagoroliveira.com/LDA-2025


Reciprocal relationships? The cross-lagged panel model CLPM using lavaan

The cross-lagged panel model
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The cross-lagged panel model

Y1 Y2 Y3

X1 X2 X3

Cross-lags enforce temporal order
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The cross-lagged panel model

Yi,t = α + β1 · Yi,t−1 + β2 · Xi,t−1 + ε

Xi,t = µ + β3 · Xi,t−1 + β4 · Yi,t−1 + υ

Disorder perception T = 1 Disorder perception T = 2

Fear of crime T = 1 Fear of crime T = 2

⇝ CLPM allows us to model reciprocal relationships

⇝ Estimated using the Structural Equation Modelling (SEM) framework

⇝ Temporal order: very useful in social research
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The cross-lagged panel model

⇝ Brunton-Smith (2011) estimated a CLPM

· Changes in perceptions of disorder lead to changes in fear of crime

· Changes in fear of crime do not lead to changes in perceptions of disorder
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The cross-lagged panel model

Some technical details. . .

⇝ Autoregressive and cross-lagged parameters are conventionally
constrained to equality

⇝ Time-constant covariates are included as predictors of both initial states
(i.e., Xi,t=1 and Yi,t=1)

⇝ Time-varying covariates are included as predictors of each Xit and each
Yit

Y at T = 1 Y at T = 2 Y at T = 3

X at T = 1 X at T = 2 X at T = 3

βa1 βa1

βa2 βa2

βc1 βc1βc2 βc2
C

Zt=1 Zt=2 Zt=3
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CLPM using lavaan
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Estimating CLPMs in R

CLPMs can be easily estimated using the lavaan package

⇝ Dataset in the wide format
⇝ Assume we have variables y and x, each measured at three occasions
⇝ Assume we also have one time-varying covariate z and two time-constant

covariates w and v

In R:
> my_ clpm <- ‘ y3 ˜ a*y2 + b*x2 + z3

y2 ˜ a*y1 + b*x1 + z2

x3 ˜ c*x2 + d*y2 + z3
x2 ˜ c*x1 + d*y1 + z2

y1 ˜ z1 + w + v
x1 ˜ z1 + w + v

x1 ˜˜ y1
x2 ˜˜ y2
x3 ˜˜ y3

‘
> fit.my_ clpm <- sem(my_clpm , estimator = "ML", data = my_ data )
> summary (fit.my_clpm , fit. measures = TRUE , standardized = TRUE)
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Thank you!

 thiago.oliveira@manchester.ac.uk

� ThiagoROliveira.com

® @oliveiratr.bsky.social
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