Longitudinal Data Analysis

methods@manchester summer school

Day 3 | morning session

Le Thiago R. Oliveira

Lecturer in Quantitative Criminology, University of Manchester

♀ 30/06-04/07

methods@manchester

Longitudinal Data Analysis

Today

Reverse causality and reciprocal relationships

- \rightsquigarrow What is reverse causality *really*?
- \rightsquigarrow The traditional cross-lagged panel model
- \rightsquigarrow Reverse causality and/vs. reciprocality
- \rightsquigarrow Estimating CLPMs using lavaan

Reverse causality and reciprocal effects

methods@manchester

Longitudinal Data Analysis

Reverse causality?

When conducting empirical research, we sometimes want to examine the effect of X on Y but are afraid that Y might also affect X

- \rightsquigarrow Effect of policing (X) on crime (Y)
 - \cdot More police might be deployed in high-crime areas
- \rightsquigarrow Effect of education (X) on income (Y)
 - $\cdot \;$ People from higher-income families may be more likely to pursue education
- \rightsquigarrow Effect of social media (X) on mental health (Y)
 - \cdot $\,$ People with poor mental health may use social media more

We may be interested in:

- \rightarrow *Controlling* for reverse causality
- ightarrow Discovering the direction of the association
- ightarrow Discovering a reciprocal relationship*

methods@manchester

Longitudinal Data Analysis

Reverse causality?

When conducting empirical research, we sometimes want to examine the effect of X on Y but are afraid that Y might also affect X

- \rightsquigarrow Effect of policing (X) on crime (Y)
 - $\cdot\,$ More police might be deployed in high-crime areas
- \rightsquigarrow Effect of education (X) on income (Y)
 - $\cdot \;$ People from higher-income families may be more likely to pursue education
- \rightsquigarrow Effect of social media (X) on mental health (Y)
 - \cdot People with poor mental health may use social media more

We may be interested in:

- \rightarrow *Controlling* for reverse causality
- \rightarrow Discovering the direction of the association
- \rightarrow Discovering a reciprocal relationship*

Reciprocality

What are reciprocal effects *really*?

- → The world is recursive (Pearl, 2009)
 - · There are no simultaneous effects
- → Usually a time problem, either:
 - · Ambiguity from theory (i.e., reciprocality is substantive)
 - Competing theory when they are specific (i.e., empirical adjudication problem)
 - · Purely empirical problem due to repeated observations
 - · reciprocality is a nuisance
 - reality and theory operate at one pace, but we observe data at another
- ---> Separate theoretical and methodological concerns

methods@manchester

Longitudinal Data Analysis

Reciprocality

What are reciprocal effects *really*?

\rightsquigarrow The world is recursive (Pearl, 2009)

- \cdot There are no simultaneous effects
- → Usually a time problem, either:
 - · Ambiguity from theory (i.e., reciprocality is substantive)
 - Competing theory when they are specific (i.e., empirical adjudication problem)
 - · Purely empirical problem due to repeated observations
 - · reciprocality is a nuisance
 - reality and theory operate at one pace, but we observe data at another
- → Separate theoretical and methodological concerns

methods@manchester

Longitudinal Data Analysis

Reciprocality

What are reciprocal effects *really*?

- \rightsquigarrow The world is recursive (Pearl, 2009)
 - \cdot There are no simultaneous effects
- \rightsquigarrow Usually a time problem, either:
 - · Ambiguity from theory (i.e., reciprocality is substantive)
 - Competing theory when they are specific (i.e., empirical adjudication problem)
 - · Purely empirical problem due to repeated observations
 - · reciprocality is a nuisance
 - reality and theory operate at one pace, but we observe data at another
- ---> Separate theoretical and methodological concerns

methods@manchester

Longitudinal Data Analysis

What are reciprocal effects *really*?

- → The world is recursive (Pearl, 2009)
 - · There are no simultaneous effects
- \rightsquigarrow Usually a time problem, either:
 - · Ambiguity from theory (i.e., reciprocality is substantive)
 - Competing theory when they are specific (i.e., empirical adjudication problem)
 - · Purely empirical problem due to repeated observations
 - · reciprocality is a nuisance
 - $\cdot\,$ reality and theory operate at one pace, but we observe data at another
- \rightsquigarrow Separate theoretical and methodological concerns

methods@manchester

Longitudinal Data Analysis

Untangling the Relationship Between Fear of Crime and Perceptions of Disorder: Evidence from a Longitudinal Study of Young People in England and Wales

lan Brunton-Smith 💌

The British Journal of Criminology, Volume 51, Issue 6, November 2011, Pages 885–899, https://doi.org/10.1093/bjc/azr064

Published: 19 August 2011

- → Brunton-Smith (2011) wanted to study the relationship between fear of crime and perceptions of disorder
 - \cdot H_1 : fear of crime \longrightarrow perceptions of disorder
 - \cdot H_2 : perceptions of disorder \longrightarrow fear of crime
- → Interesting question: which one is causing which?
 - · Can we use empirical data to answer it?

Untangling the Relationship Between Fear of Crime and Perceptions of Disorder: Evidence from a Longitudinal Study of Young People in England and Wales

lan Brunton-Smith 💌

The British Journal of Criminology, Volume 51, Issue 6, November 2011, Pages 885–899,

https://doi.org/10.1093/bjc/azr064

Published: 19 August 2011

- \rightsquigarrow Brunton-Smith (2011) wanted to study the relationship between fear of crime and perceptions of disorder
 - \cdot H_1 : fear of crime \longrightarrow perceptions of disorder
 - \cdot H_2 : perceptions of disorder \longrightarrow fear of crime
- → Interesting question: which one is causing which?
 - · Can we use empirical data to answer it?

Untangling the Relationship Between Fear of Crime and Perceptions of Disorder: Evidence from a Longitudinal Study of Young People in England and Wales

lan Brunton-Smith 💌

The British Journal of Criminology, Volume 51, Issue 6, November 2011, Pages 885–899,

https://doi.org/10.1093/bjc/azr064

Published: 19 August 2011

- \rightsquigarrow Brunton-Smith (2011) wanted to study the relationship between fear of crime and perceptions of disorder
 - \cdot H_1 : fear of crime \longrightarrow perceptions of disorder
 - \cdot H_2 : perceptions of disorder \longrightarrow fear of crime
- \rightsquigarrow Interesting question: which one is causing which?
 - \cdot Can we use empirical data to answer it?

 \rightsquigarrow Panel data allows us to model changes in various ways

· e.g. including autoregressive parameters

$$Y_{it} = \alpha + \beta_1 \cdot Y_{i,t-1} + \beta_2 \cdot X_{i,t} + \varepsilon$$

 \rightsquigarrow Because of the inclusion of the autoregressive parameter β_1 :

· β_2 represents the 'effect' of X on changes in Y

Longitudinal Data Analysis

 \rightsquigarrow Panel data allows us to model changes in various ways

· e.g. including autoregressive parameters

$$Y_{it} = \alpha + \beta_1 \cdot Y_{i,t-1} + \beta_2 \cdot X_{i,t} + \varepsilon$$

 $\rightsquigarrow~$ Because of the inclusion of the autoregressive parameter $\beta_1 :$

 $\cdot \ \beta_2$ represents the 'effect' of X on changes in Y

methods@manchester

Longitudinal Data Analysis

 \rightsquigarrow Good! So we can assess the association between perceptions of disorder and *changes* in fear of crime:

→ But perceptions of disorder also vary in time, so we can also assess the association between fear of crime and *changes* in disorder perceptions:

 \rightsquigarrow Good! So we can assess the association between perceptions of disorder and changes in fear of crime:

→→ But perceptions of disorder also vary in time, so we can **also** assess the association between fear of crime and *changes* in disorder perceptions:

 \Rightarrow What if we draw on the SEM framework and estimate both at the same time?

methods@manchester

Longitudinal Data Analysis

Cross-lags enforce temporal order

methods@manchester

Longitudinal Data Analysis

$$Y_{i,t} = \alpha + \beta_1 \cdot Y_{i,t-1} + \beta_2 \cdot X_{i,t-1} + \varepsilon$$
$$X_{i,t} = \mu + \beta_3 \cdot X_{i,t-1} + \beta_4 \cdot Y_{i,t-1} + \upsilon$$

- ~> CLPM allows us to model reciprocal relationships
- → Estimated using the Structural Equation Modelling (SEM) framework
- → Temporal order: very useful in social research

methods@manchester

Longitudinal Data Analysis

$$\begin{split} Y_{i,t} &= \alpha + \beta_1 \cdot Y_{i,t-1} + \beta_2 \cdot X_{i,t-1} + \varepsilon \\ X_{i,t} &= \mu + \beta_3 \cdot X_{i,t-1} + \beta_4 \cdot Y_{i,t-1} + \upsilon \end{split}$$

→ CLPM allows us to model reciprocal relationships

Setimated using the Structural Equation Modelling (SEM) framework

→ Temporal order: very useful in social research

methods@manchester

Longitudinal Data Analysis

$$\begin{split} Y_{i,t} &= \alpha + \beta_1 \cdot Y_{i,t-1} + \beta_2 \cdot X_{i,t-1} + \varepsilon \\ X_{i,t} &= \mu + \beta_3 \cdot X_{i,t-1} + \beta_4 \cdot Y_{i,t-1} + \upsilon \end{split}$$

- → CLPM allows us to model reciprocal relationships
- \rightsquigarrow Estimated using the Structural Equation Modelling (SEM) framework
- \rightsquigarrow Temporal order: very useful in social research

methods@manchester

Longitudinal Data Analysis

→ Brunton-Smith (2011) estimated a CLPM

- \cdot Changes in perceptions of disorder lead to changes in fear of crime
- · Changes in fear of crime do not lead to changes in perceptions of disorder

methods@manchester

Longitudinal Data Analysis

Some technical details...

$$Y$$
 at $T = 1$ Y at $T = 2$ Y at $T = 3$

X at T = 1 X at T = 2 X at T = 3

methods@manchester

Longitudinal Data Analysis

Some technical details...

Autoregressive and cross-lagged parameters are conventionally constrained to equality

$$Y \text{ at } T = 1 \xrightarrow{\beta_{a1}} Y \text{ at } T = 2 \xrightarrow{\beta_{a1}} Y \text{ at } T = 3$$
$$X \text{ at } T = 1 \xrightarrow{\beta_{a2}} X \text{ at } T = 2 \xrightarrow{\beta_{a2}} X \text{ at } T = 3$$

Some technical details...

Autoregressive and cross-lagged parameters are conventionally constrained to equality

Some technical details...

- Autoregressive and cross-lagged parameters are conventionally constrained to equality
- \rightsquigarrow Time-constant covariates are included as predictors of both initial states (i.e., $X_{i,t=1}$ and $Y_{i,t=1}$)

Some technical details...

- Autoregressive and cross-lagged parameters are conventionally constrained to equality
- \rightsquigarrow Time-constant covariates are included as predictors of both initial states (i.e., $X_{i,t=1}$ and $Y_{i,t=1}$)
- \leadsto Time-varying covariates are included as predictors of each X_{it} and each Y_{it}

Longitudinal Data Analysis

CLPM using lavaan

methods@manchester

Longitudinal Data Analysis

Estimating CLPMs in R

CLPMs can be easily estimated using the lavaan package

- $\rightsquigarrow~$ Dataset in the wide format
- \rightsquigarrow Assume we have variables y and x, each measured at three occasions
- \rightsquigarrow Assume we also have one time-varying covariate z and two time-constant covariates w and v

```
In R:
```

Longitudinal Data Analysis

Thank you!

- thiago.oliveira@manchester.ac.uk
- ✤ ThiagoROliveira.com
- 🗞 @oliveiratr.bsky.social

methods@manchester

Longitudinal Data Analysis

REFERENCES

- Brunton-Smith, I. (2011). Untangling the relationship between fear of crime and perceptions of disorder: Evidence from a longitudinal study of young people in England and Wales. *The British Journal of Criminology* 51(6), 885–899.
- Pearl, J. (2009). Causality. Cambridge University Press.