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Today

Reverse causality and reciprocal relationships

⇝ A critique of the cross-lagged panel model
⇝ Three common problems
⇝ Some potential solutions
⇝ Estimating RI-CLPMs and DPMs
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A critique of the cross-lagged panel model

(Hamaker et al., 2015)

(Allison et al., 2017)
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A critique of the cross-lagged panel model

Common issues have emerged recently

⇝ Correct specification of temporal lags (Vaisey and Miles, 2017)

⇝ Unobserved stable heterogeneity (Hamaker et al., 2015; Allison et al., 2017)

⇝ Low inter-temporal variation (Hamaker et al., 2015)
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Temporal order
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Temporal Order

As illustrated by Vaisey and Miles (2017), if. . .

⇝ True model: y = β · xt + αi + ϵit

⇝ Estimated model: y = β∗ · xt−1 + αi + ϵei

⇝ Resulting bias: E(β∗) = −0.5 · β

⇒ Incorrect temporal order can reverse signs
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Temporal Order

Problem: we cannot know whether we have the correct specification of
temporal lags!

⇒ Probably the most underappreciated issue as it may produce misleading results

Solution

⇝ Use strong theory to get timing right!

⇝ Think carefully about time processes
· e.g., alcohol to disinhibition

⇝ Be very suspicious of unexpected reversed signs

⇝ Vaisey and Miles: estimate both lagged and contemporaneous effects
· If no contemporaneous effect, only lagged, you’re probably fine
· If contemporaneous shows up, you can’t definitively determine direction of

contemporaneous effect
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Unobserved stable heterogeneity
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Unobserved stable heterogeneity

Point is relatively simple: the autoregressive parameter alone is not sufficient!

⇝ It does not fully capture all time-constant traits
⇝ Therefore, the model does not properly model change over time

Solution: use some recently developed robust estimator:

⇝ Hamaker’s (2015) Random Intercepts-Cross-lagged panel model
(RI-CLPM)

· Inspired by random effects models, it explicitly partitions the variance in
between-unit variation and within-unit variation

⇝ Allison et al.’s (2017) dynamic panel model with fixed effects (DPM)
· Inspired by econometric models, considered the most robust approach by

Vaisey and Miles (2017)
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Hamaker et al’s RI-CLPM
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Allison et al.’s dynamic panel model
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Pros: properly controls for unobserved stable heterogeneity, dismisses the threat of
reverse causality, and properly models change over time
Cons: reciprocal effects cannot be simultaneously estimated, still sensitive to the
correct specification of temporal lags
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Low inter-temporal variation
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Low inter-temporal variation

⇝ Error and bias become proportionally larger components

⇝ Intuition: not enough variation to explain!

⇝ Common with short observation times and stable constructs

⇝ Psychological constructs can be very stable over time

Solution:

⇝ This is first and foremost a data problem, so you want to attack it during
design of data collection if possible

⇝ If you can’t collect new data, look at different aggregations or wave skips
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Low inter-temporal variation
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Summary

⇝ Cross-lagged panel models are a powerful method that permits
· modelling reciprocal relationship
· establishing temporal order
· handling reverse causality

⇝ In general, default to more robust estimators
· Hamaker et al.’s RI-CLPM
· Allison et al.’s DPM

⇝ Models are very sensitive to the correct specification of temporal lags
· Not something that can be solved empirically. Think carefully about the

phenomenon you are studying. . .

⇝ Now let’s see how to estimate those models using R!
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Thank you!

 thiago.oliveira@manchester.ac.uk

� ThiagoROliveira.com

® @oliveiratr.bsky.social
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